Twitter Facebook Youtube

Redox Biology of Trypanosomes


  • Marcelo Comini, Dr. rer. nat. (Responsable)
  • Andrea Medeiros, PhD (Postdoc)
  • Mariana Bonilla, PhD (Postdoc)
  • Diego Benitez, PhD (Postdoc)
  • Cecilia Ortíz, PhD (Research assistant)
  • Florencia Sardi, MSc. (PhD Student)
  • Jaime Franco, MChem (Research assistant)
  • Karin Grungberg (BSc Student)


By means of a multidisciplinary approach we study the biochemical, structural and biological features that distinguish several key components of the redox system from pathogenic trypanosomatids, parasites that are causative agents of severe diseases in animals and humans. Several essential cellular processes are regulated and/or depend on redox reactions that have cysteine residues as targets or mediators. Important from a therapeutic point of view, the components of the redox system from trypanosomatids significantly differ from those present in the mammalian hosts, which opens the possibility for a selective inhibition of parasite proliferation. Research in our laboratory aims at:

  1. gaining further understanding into the thiol-based redox metabolism of trypanosomatids by studying its synthesis, recycling and role in several cell functions,
  2. developing and exploiting the use of novel redox biosensors to unravel fundamental questions on parasite biology, host/parasite interaction and phenotype-based compound screening,
  3. identifying and characterizing novel drug target candidates.

Research lines


By a multidisciplinary approach we study the biochemical, structural and biological features that distinguish several key components of the trypanothione system. Using animal infection models we further investigate the role these (macro)molecules play in parasite biology and pathogenesis. The data from these studies is used to validate drug target candidates and guide novel drug development strategies.


Short lived reactive oxygen species act as second messengers producing changes in the redox poise of relevant redox couples within biological systems. A steadily increasing number of evidences support a key role for redox signaling in the regulation of a wide diversity of cellular and (patho) physiological processes. The measurement of physiological oxidants and intracellular redox changes on real-time and by non-invasive methods has recently been possible due to the development of fluorescent redox biosensors [Meyer and Dick 2010 Antiox Redox Signal]. Transgenic cell lines of T. brucei and T. cruzi expressing a redox biosensor have been generated in our laboratory and are currently used to address the role of redox signaling and oxidative stress in events such as parasite-host interaction, cell differentiation, cell cycle, apoptosis and metabolic dysfunction. The reporter cell lines are also employed in phenotypic drug-screening campaigns.


We apply target- and phenotypic-based approaches to screen synthetic and natural compounds against the enzyme responsible of trypanothione biosynthesis in different trypanosomatid species and infective forms of the pathogens. Compound mode of action at cellular and enzyme level is studied to drive drug optimization. To conduct these studies our laboratory relies on an important network of local and international groups working on (medicinal) chemistry. In 2014, our group joined the European Consortium COST “Targeted chemotherapy towards diseases caused by endoparasites” (Action CM1307) and became member of “The Research Network Natural Products against Neglected Diseases” (ResNetNPND).


Co-organizers of the International  Course and Symposium “Redox Chemistry and Biology of Thiols” and “Thiol Metabolism and Redox Regulation of Cellular Functions” 2011, 2012, 2013 and 2015.

Member of the European Consortium for Cooperation in Science and Technology, COST Action CM 0801 “New Drugs for Neglected Diseases” (2011-2013) and COST Action CM 1307 “Targeted chemotherapy towards diseases caused by endoparasites” (2014-2017).

Members of our group participated delivering lectures and practical activities in several courses, workshop and symposia related to our expertise.


  1. Fiocruz-Pasteur Grant –“Trypanosoma´s prostaglandin metabolism: role in infection, pathogenesis and drug resistance”–, 2014-2016. M. Comini (Principal Investigator).
  2. ACIP Grant –“Target-based drug discovery of compounds interfering with trypanothione biosynthesis in trypanosomatids”–, Project A-17-2015, 2015-2017. M. Comini (Principal Investigator).
  3. ICGEB Grant –“The thioredoxin-fold diversity in trypanosomatids and tapeworms” Project CRP/URU 14-01–, 2015-2017. M. Comini (co-Principal Investigator).
  4. FMV Grant –“Diseño de biosensors para monitoreo simultáneo de señalización redox y cAMP: desde la computadora a la célula y vuelta a la computadora”–, Project FMV_1_2014_1_104000, 2015-2018. Comini (Associate Researcher).



Ferrer MJ, Wehrendt DP, Bonilla M, Comini MA, Tellez-Iñón MT, Potenza M (2018) Production of recombinant Trypanosoma cruzi antigens in Leishmania tarentolae. In: Methods Mol Biol. Ed. Walker JM, Springer Nature, Humana Press: New York, Heidelberg. In Press.

Talevi A, Carrillo C, Comini MA (2019) The thiol-polyamine metabolism of Trypanosoma cruzi: molecular targets and drug repurposing strategies. Curr. Med. Chem. In Press

Franco J, Scarone L, Comini MA (2018) Drugs and drug resistance in African and American trypanosomiasis. In: ARMC: Medicinal Chemistry Approaches To Overcome Antibiotic Resistance volume 51, Ed. Botta, M., Academic Press, Elsevier, pp. 1-42.

Sturlese M, Manta B, Bertarello A, Bonilla M, Lelli M, Zambelli B, Grunberg K, Mammi S, Comini M, Bellanda M (2018) Monothiol glutaredoxin 1 from trypanosomes contains a lineage-specific, intrinsically disordered, regulatory region. Sci. Rep. 8: 13716.

Rivas F, Medeiros A, Rodríguez Arce E, Comini MA, Ribeiro CM, Pavan FR, Gambino D (2018) New heterobimetallic ferrocenyl derivatives: evaluation of their potential as prospective agents against trypanosomatid parasites and Mycobacterium tuberculosis. J. Inorg. Biochem. 187: 73-84.

Comini MA (2018) Biosynthesis of Polyamine–Glutathione Derivatives in Enterobacteria and Kinetoplastida. In: Glutathione, Ed. Flohé, L., CRC Press: Boca Raton, pp. 285-305.

Ebersoll S, Musunda B, Schmenger T, Dirdjaja N, Bonilla M, Manta B, Comini MA, Krauth-Siegel RL (2018) A glutaredoxin in the mitochondrial intermembrane space has stage-specific functions in the thermo-tolerance and proliferation of African trypanosomes. Redox Biology 15: 532-547.

Salinas G, Comini MA (2018) Alternative thiol-based redox systems. Antioxid Redox Signal. 28: 407-409.

Manta B, Bonilla M, Fiestas L, Sturlese M, Salinas G, Bellanda M, Comini MA. (2018) Polyamine-based thiols in Trypanosomatids: evolution, protein structural adaptations and biological functions. Antioxid Redox Signal. 28: 463-486.


Franco J, Sardi F, Szilágyi L, Kövér K, Fehér K, Comini MA (2017) Diglycosyl diselenides alter redox homeostasis and glucose consumption of infective African trypanosomes. Int. J. Parasitol. Drugs & Drug Resist. 7: 303-313.

Ornithine decarboxylase or gamma-glutamylcysteine synthetase overexpression protects Leishmania (Vianna) guyanensis against antimony (2017) Fonseca MS, Comini M, Resende BV, Santi AMM, Zoboli AP, Moreira DS, Monte-Neto RL and Murta SMF. Exp. Parasitol. 175: 36-43.

Franco J, Medeiros A, Benítez D, Perelmuter K, Serra G, Comini MA, Scarone L (2017) In vitro activity and mode of action of Distamycin analogues against African trypanosomes. Eu. J. Med. Chem. 126: 776-788.


Orban OCF, Korn RS, Benítez D, Medeiros A, Preu L, Loaëc N, Meijer L, Koch O, Comini MA, and Kunick C (2016) 5-Substituted 3-chlorokenpaullone derivatives are potent inhibitors of Trypanosoma brucei bloodstream forms. Bioorg Med Chem. 24(16):3790-800.

Benítez D, Medeiros A, Fiestas L, Panozzo-Zenere EA, Maiwald F, Prousis KC, Roussaki M, Calogeropoulou T, Detsi A, Jaeger T, Šarlauskas J, Peterlin Mašič L, Kunick C, Labadie GR, Flohé L, Comini MA. (2016) Identification of Novel Chemical Scaffolds Inhibiting Trypanothione Synthetase from Pathogenic Trypanosomatids. PLoS Negl Trop Dis. 10(4): e0004617.

Ortiz C, Moraca F, Medeiros A, Botta M, Hamilton N, Comini M. (2016) Binding Mode and Selectivity of Steroids towards Glucose-6-phosphate Dehydrogenase from the Pathogen Trypanosoma cruzi. Molecules 21(3), 368;

Bonilla M, Krull E, Irigoín F, Salinas G, Comini MA. (2016) Selenoproteins of African trypanosomes are dispensable for parasite survival in an animal host. Mol Biochem Parasitol. 206(1-2): 13-19.

Alberca LN, Sbaraglini ML, Balcazar D, Fraccaroli L, Carrillo C, Medeiros A, Benitez D, Comini M, Talevi A. (2016) Discovery of novel polyamine analogs with anti-protozoal activity by computer guided drug repositioning. J Comput Aided Mol Des. 30(4): 305-321.

Comini MA (2016) Measurement and meaning of cellular thiol:disufhide redox status. Free Radic Res. 50(2): 246-71.

Randall L, Manta B, Nelson KJ, Santos J, Poole LB, Denicola A. (2016) Structural changes upon peroxynitrite-mediated nitration of peroxiredoxin 2; nitrated Prx2 resembles its disulfide-oxidized form. Arch Biochem Biophys. 590: 101-108.


Musunda B, Benítez D, Dirdjaja N, Comini MA, Krauth-Siegel RL. (2015) Glutaredoxin-deficiency confers bloodstream Trypanosoma brucei with improved thermotolerance. Mol Biochem Parasitol. 204(2): 93-105.

Bisio H, Bonilla M, Manta B, Graña M, Salzman V, Aguilar PS, Gladyshev VN, Comini MA, Salinas G. (2015) A New Class of Thioredoxin-Related Protein Able to Bind Iron-Sulfur Clusters. Antioxid Redox Signal. Oct 27. [Epub ahead of print] PubMed PMID: 26381228.

Stefani M, Sturlese M, Manta B, Löhr F, Mammi S, Comini M, Bellanda M (2015) (1)H, (13)C and (15)N resonance assignment of the cytosolic dithiol glutaredoxin 1 from the pathogen Trypanosoma brucei. Biomol NMR Assign. 10(1): 85-88.

Rodríguez Arce E, Sarniguet C, Moraes TS, Vieites M, Tomaz AI, Medeiros A, Comini MA, Varela J, Cerecetto H, González M, Marques F, García MH, Otero L, Gambino D (2015) A new ruthenium cyclopentadienyl azole compound with activity on tumor cell lines and trypanosomatid parasites. J Coord. Chem. 1-15.

Fernández M, Arce ER, Sarniguet C, Morais TS, Tomaz AI, Azar CO, Figueroa R, Diego Maya J, Medeiros A, Comini M, Helena Garcia M, Otero L, Gambino D. (2015) Novel ruthenium(II) cyclopentadienyl thiosemicarbazone compounds with antiproliferative activity on pathogenic trypanosomatid parasites. J Inorg Biochem. 153: 306-314.

Miserachs HG, Cipriani M, Grau J, Vilaseca M, Lorenzo J, Medeiros A, Comini MA, Gambino D, Otero L, Moreno V. (2015) Antitumor and antiparasitic activity of novel ruthenium compounds with polycyclic aromatic ligands. J Inorg Biochem. 150: 38-47.


Peña S., Fagundez C., Medeiros A., Comini M.A., Scarone L., Sellanes D., Manta E., Tulla-Puche J., Albericio F., Stewart L., Yardley V. and Serra G. (2014) Synthesis of Cyclohexapeptides as Promising Antimalarial and Anti-trypanosomal Agents. Med. Chem. Comm. 3: 1443-1448.

Sousa A.F., Gomes-Alves A.G., Benítez D., Comini M.A., Flohé L., Jaeger T., Passos J., Stuhlmann F., Tomás A. M., Castro H. (2014) Genetic and chemical analyses reveal that trypanothione synthetase but not glutathionylspermidine synthetase is essential for Leishmania infantum. Free Rad. Biol. Med. 73: 229-238.

Maiwald F; Benítez D; Charquero D; Abad Dar M; Erdmann H; Preu L;Koch O; Hoscher C; Meijer L; Comini MA; Kunick C (2014) 9- and 11-substituted 4-azapaullones are potent and selective inhibitors of African trypanosoma.. Eu. J. Med. Chem. 83: 274-283.

Randall LM, Manta B, Hugo M, Gil M, Batthyàny C, Trujillo M, Poole LB, Denicola A (2014) Nitration transforms a sensitive peroxiredoxin 2 into a more active and robust peroxidase. J Biol Chem. 289(22): 15536-43.

Sturlese M, Lelli M, Manta B, Mammi S, Comini MA, Bellanda M. (2014) (1)H, (13)C and (15)N resonance assignment of the mature form of monothiol glutaredoxin 1 from the pathogen Trypanosoma brucei. Biomol NMR Assign 9: 143-146.

Hiller C., Nissen A., Benitez D., Comini M., Krauth-Siegel R. L (2014) Cytosolic Peroxidases Protect the Lysosome of Bloodstream African Trypanosomes from Iron-Mediated Membrane Damage. PLoS Pathogens 10(4):e1004075.


Manta B., Pavan C., Sturlese M., Medeiros A., Crispo M., Berndt C., Krauth-Siegel R.L., Bellanda M. and Comini M.A. (2013) Iron-sulfur cluster binding by mitochondrial monothiol glutaredoxin-1 of Trypanosoma brucei: molecular basis of iron-sulfur cluster coordination and relevance for parasite infectivity. Antioxid. Redox Signal. 19(7):665-82

Sardi F, Manta B, Portillo-Ledesma S, Knoops B, Comini MA, Ferrer-Sueta G. 2013. Determination of acidity and nucleophilicity in thiols by reaction with monobromobimane and fluorescence detection. Anal Biochem. 435(1):74-82.

Manta B, Comini M, Medeiros A, Hugo M, Trujillo M, Radi R. 2013. Trypanothione: A unique bis-glutathionyl derivative in trypanosomatids. Biochim Biophys Acta. 1830(5):3199-216.

Fernández M., Becco L., Correia I., Benítez J., Piro O.E., Echeverria G.A., Medeiros A., Comini M., Lavaggi M.L., González M., Cerecetto H., Moreno V., Pessoa J.C., Garat B. and Gambino D. (2013) Oxidovanadium(IV) and dioxidovanadium(V) complexes of tridentate salicylaldehyde semicarbazones: Searching for prospective antitrypanosomal agents. J. Inorg Biochem. 127:150-60.

Comini M.A., Krauth-Siegel R.L., Bellanda M. (2013) Mono- and di-thiol glutaredoxins in the trypanothione-based redox metabolism of pathogenic trypanosomes. Antiox. Redox Signal. 19(7):708-22.

Comini M.A, Ortiz C., Cazzulo, J.J. (2013). Drug Targets in Trypanosomal and Leishmanial Pentose Phosphate Pathway. In: Trypanosomatids diseases, molecular routes to drug discovery. Ed. T. Jäger, O. Koch, L.Flohé, Wiley-Blackwell. ISBN: 978-3-527-33255-7.

Comini M.A., Flohé L. (2013). The trypanothione-based redox metabolism of trypanosomatids. In: Trypanosomatids diseases, molecular routes to drug discovery. Ed. T. Jäger, O. Koch, L.Flohé, Wiley-Blackwell ISBN: 978-3-527-33255-7.


Peña S., Scarone L., Medeiros A., Manta E., Comini M., Serra G. 2012. Synthesis of precursors and macrocycle analogs of aerucyclamides as anti-trypanosomal agents. Med. Chem. Commun. 3(11):1443-1448 [PDF].

Demoro B., Sarniguet C., Sánchez-Delgado R., Rossi M., Liebowitz D., Caruso, F., Olea-Azar C., Moreno V., Medeiros A., Comini M.A., Otero L., Gambino D. 2012New organoruthenium complexes with bioactive thiosemicarbazones as co-ligands: potential anti-trypanosomal agents. Dalton Transactions. 41(5):1534-43.

Manta B., Fleitas A.L., Comini M.A. (2012). Iron Metabolism in Pathogenic Trypanosomes. In: Iron Metabolism. Ed. S.Arora, InTech Press. ISBN 979-953-307-162-5.

Comini M.A., Medeiros A., Manta B. (2012). Stress response in the infective stage of Trypanosoma brucei. In: Stress Response in Microbiology. Ed. J.M. Requena, Horizon Scientific Press. ISBN 978-1-908230-04-1.


Ortiz C., Larrieux N., Medeiros A., Botti H., Comini M., Buschiazzo, A. 2011. Expression, crystallization and preliminary X-ray crystallographic analysis of glucose-6-phosphate dehydrogenase from the human pathogen Trypanosoma cruzi in complex with substrate. Acta Crystallogr Sect F Struct Biol Cryst Commun. 67(Pt 11):1457-61 / 67(Pt 12):1674

Roldan A., Comini M.A., Crispo M., Krauth-Siegel R.L. (2011) Lipoamide dehydrogenase is essential for both bloodstream and procyclic Trypanosoma brucei. Mol. Microbiol. 81(3):623-39

Manta B., Obal G., Ricciardi A., Pritsch O., Denicola A. (2011) Tools to evaluate conformation in protein products. 2011. Biotechnology Journal 6(6):731-41.

Ferrer-Sueta G., Manta B., Botti H., Radi R., Trujillo M., Denicola A. 2011. Factors affecting protein thiol reactivity and specificity in peroxide reduction. Chem. Res. Tox. 24(4):434-50.


Comini M.A., Dirdjaja N., Kaschel M., Krauth-Siegel R.L., 2009. Preparative enzymatic synthesis of trypanothione and trypanothione analogues. Int. J. Parasitol. 39, 1059-1062.


Comini M.A., Rettig J., Dirdjaja N., Hanschmann E.M., Berndt C., Krauth-Siegel R.L., 2008. Monothiol Glutaredoxin-1 Is an Essential Iron-Sulfur Protein in the Mitochondrion of African Trypanosomes. J Biol. Chem. 283, 27785-27798.

Irigoín F., Cibils L., Comini M.A., Wilkinson S.R., Flohé L., Radi R., 2008. Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification. Free Radic. Biol. Med. 45, 733-742.

Buchholz K., Comini M.A., Wissenbach D., Schirmer R. H., Krauth-Siegel R. L. and Gromer S. (2008) Cytotoxic interactions of methylene blue with trypanosomatids-specific disulfide reductases and their dithiol products. Mol. Biochem. Parasitol., 160: 65-69.

Krauth-Siegel R. L. and Comini M.A. (2008) Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochem. Biophys. Acta, 1780: 1236-1248.

Filser M., Comini M.A., Dirdjaja N., Molina-Navarro M., Herrero E., and Krauth-Siegel R. L. (2008) Cloning, functional analysis and localization of monothiol glutaredoxin-1 from Trypanosoma brucei. Biol. Chem., 389: 21-32.

Bollati-Fogolín M. and Comini M. A. (2008). Chapter 3: Clonagem e Expressão de Proteínas Heterólogas em Células Animais, pp. 40-76. In: Tecnologia do Cultivo de Células Animais: de Biofármacos a Terapia Gênica. Eds. Ângela Maria Moraes Elisabeth F. P. Augusto e Leda Dos Reis Castilho. Editora Roca, São Paulo, Brazil.


2007 and previous years

Schlecker T., Comini M.A., Melchers J., Ruppert T., and Krauth-Siegel R. L. (2007) Catalytic mechanism of the glutathione peroxidase-type tryparedoxin peroxidase of Trypanosoma brucei. Biochem. J., 405: 445-454.

Xolalpa W., Vallecillo A., Lara M., Spallek R., Comini M., Singh M., and Espitia C. (2007) Identification of novel bacterial plasminogen-binding proteins in the human pathogen Mycobacterium tuberculosis. Proteomics, 7: 3332-3341.

Comini M.A., Krauth-Siegel R.L., and Flohé, L. (2007) Depletion of the thioredoxin homologue tryparedoxin impairs anti-oxidative defense in African trypanosomes. Biochem. J., 402: 43-49.

Bollati-Fogolín M. and Comini M. A. (2007). Chapter 3: Cloning and Expression of Heterologous Proteins in Animal Cells, pp. 39-73. In: Animal Cell Technology: From Biopharmaceuticals to Gene Therapy. Eds. Leda R. Castilho, Ângela Maria Moraes, Elisabeth F. P. Augusto and Michael Butler. Taylor & Francis, New York, US and Abingdon, UK.

Schlecker T., Comini M. A., and Krauth-Siegel R. L. (2007) . Chapter 11: The trypanothione system, pp. 231-252. In: Peroxiredoxin systems: Structures and functions. Eds. Leopold Flohé and Robin J. Harris. Springer-Verlag, Berlin, Germany.

Trujillo M., Mauri P., Benazzi L., Comini M.A., De Palma A., Flohé L., Radi R., Stehr M., Singh M., Ursini F. and Jäger T. (2006) The mycobacterial thioredoxin peroxidase can act as a one-cysteine-peroxiredoxin. J. Biol. Chem., 281: 20555-20566.

Comini M.A., Menge U., Wissing J. and Flohé L. (2005) Trypanothione synthesis in Crithidia revisited. J. Biol. Chem., 280: 6850-6860.

Comini M.A., Menge U., and Flohé L. (2005) “Convenient isolation and kinetic mechanism of glutathionylspermidine synthetase from Crithidia fasciculata. Vol. 272 (1997) 11908–11915″. J. Biol. Chem., 280: 7407.

Comini M.A., Guerrero S. A., Haile S., Menge U., Lünsdorf H. and Flohé L. (2004) Validation of Trypanosoma brucei trypanothione synthetase as drug target. Free Radic. Biol. Med., 36: 1289-1302.

Imaz S. M., Comini M.A., Zerbini E., Sequeira M. D., Latini O., Claus J. D. and Singh M. (2004) Evaluation of commercial ELISA kits for the detection of Tuberculosis in Argentinean population. J. Clin. Microbiol., 42: 884-887.

Comini M.A., Menge U. and Flohé L. (2003) Biosynthesis of trypanothione in Trypanosoma brucei brucei. Biol. Chem., 384: 653-656.

Imaz M. S., Comini M.A., Zerbini E., Sequeira M. D., Spoletti M. J., Etchart A. A., Pagano H. J., Bonifasich E., Díaz N., Claus J. D. and Singh M. (2001) Evaluation of the diagnostic value of measuring IgG, IgM and IgA antibodies to the recombinant 16-kilodalton antigen of Mycobacterium tuberculosis in childhood tuberculosis. Int. J. Tuberc. Lung Dis., 5 (11): 1036-1043.